Differentiate the functions with respect to x.
$\cos (\sqrt{x})$
Let $f(x)=\cos (\sqrt{x})$
Also, let $u(x)=\sqrt{x}$
And, $v(t)=\cos t$
Then, $(v o u)(x)=v(u(x))$
$=v(\sqrt{x})$
$=\cos \sqrt{x}$
$=f(x)$
Clearly, f is a composite function of two functions, u and v, such that
Then, $\frac{d t}{d x}=\frac{d}{d x}(\sqrt{x})=\frac{d}{d x}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} x^{-\frac{1}{2}}$
$=\frac{1}{2 \sqrt{x}}$
And, $\frac{d v}{d t}=\frac{d}{d t}(\cos t)=-\sin t$
$=-\sin (\sqrt{x})$
By using chain rule, we obtain
$\frac{d t}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}$
$=-\sin (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}$
$=-\frac{1}{2 \sqrt{x}} \sin (\sqrt{x})$
$=-\frac{\sin (\sqrt{x})}{2 \sqrt{x}}$
Alternate method
$\frac{d}{d x}[\cos (\sqrt{x})]=-\sin (\sqrt{x}) \cdot \frac{d}{d x}(\sqrt{x})$
$=-\sin (\sqrt{x}) \times \frac{d}{d x}\left(x^{\frac{1}{2}}\right)$
$=-\sin \sqrt{x} \times \frac{1}{2} x^{-\frac{1}{2}}$
$=\frac{-\sin \sqrt{x}}{2 \sqrt{x}}$