Question:
Differentiate the functions with respect to x.
$\cos (\sin x)$
Solution:
Let $f(x)=\cos (\sin x), u(x)=\sin x$, and $v(t)=\cos t$
Then, $(v o u)(x)=v(u(x))=v(\sin x)=\cos (\sin x)=f(x)$
Thus, f is a composite function of two functions.
Put t = u (x) = sin x
$\therefore \frac{d v}{d t}=\frac{d}{d t}[\cos t]=-\sin t=-\sin (\sin x)$
$\frac{d t}{d x}=\frac{d}{d x}(\sin x)=\cos x$
By chain rule, $\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=-\sin (\sin x) \cdot \cos x=-\cos x \sin (\sin x)$
Alternate method
$\frac{d}{d x}[\cos (\sin x)]=-\sin (\sin x) \cdot \frac{d}{d x}(\sin x)=-\sin (\sin x) \cdot \cos x=-\cos x \sin (\sin x)$