Differentiate the function with respect to x.
$\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$
Let $y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$
Taking logarithm on both the sides, we obtain
$\log y=\log \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$
$\Rightarrow \log y=\frac{1}{2} \log \left[\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}\right]$
$\Rightarrow \log y=\frac{1}{2}[\log \{(x-1)(x-2)\}-\log \{(x-3)(x-4)(x-5)\}]$
$\Rightarrow \log y=\frac{1}{2}[\log (x-1)+\log (x-2)-\log (x-3)-\log (x-4)-\log (x-5)]$
Differentiating both sides with respect to x, we obtain
$\frac{1}{y} \frac{d y}{d x}=\frac{1}{2}\left[\begin{array}{l}\frac{1}{x-1} \cdot \frac{d}{d x}(x-1)+\frac{1}{x-2} \cdot \frac{d}{d x}(x-2)-\frac{1}{x-3} \cdot \frac{d}{d x}(x-3) \\ -\frac{1}{x-4} \cdot \frac{d}{d x}(x-4)-\frac{1}{x-5} \cdot \frac{d}{d x}(x-5)\end{array}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{y}{2}\left(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right)$
$\therefore \frac{d y}{d x}=\frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right]$