Differentiate the function with respect to x.
$(\log x)^{x}+x^{\log x}$
Let $y=(\log x)^{x}+x^{\log x}$
Also, let $u=(\log x)^{x}$ and $v=x^{\log x}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$ ...(1)
$u=(\log x)^{x}$
$\Rightarrow \log u=\log \left[(\log x)^{x}\right]$
$\Rightarrow \log u=x \log (\log x)$
Differentiating both sides with respect to x, we obtain
$\frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(x) \times \log (\log x)+x \cdot \frac{d}{d x}[\log (\log x)]$
$\Rightarrow \frac{d u}{d x}=u\left[1 \times \log (\log x)+x \cdot \frac{1}{\log x} \cdot \frac{d}{d x}(\log x)\right]$
$\Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{x}{\log x} \cdot \frac{1}{x}\right]$
$\Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right]$
$\Rightarrow \frac{d u}{d x}=(\log x)^{x}\left[\frac{\log (\log x) \cdot \log x+1}{\log x}\right]$
$\Rightarrow \frac{d u}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)]$ ...(2)
$v=x^{\log x}$
$\Rightarrow \log v=\log \left(x^{\log x}\right)$
$\Rightarrow \log v=\log x \log x=(\log x)^{2}$
Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \cdot \frac{d v}{d x}=\frac{d}{d x}\left[(\log x)^{2}\right]$
$\Rightarrow \frac{1}{v} \cdot \frac{d v}{d x}=2(\log x) \cdot \frac{d}{d x}(\log x)$
$\Rightarrow \frac{d v}{d x}=2 v(\log x) \cdot \frac{1}{x}$
$\Rightarrow \frac{d v}{d x}=2 x^{\log x} \frac{\log x}{x}$
$\Rightarrow \frac{d v}{d x}=2 x^{\log x-1} \cdot \log x$ ...(3)
Therefore, from (1), (2), and (3), we obtain
$\frac{d y}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)]+2 x^{\log x-1} \cdot \log x$