Differentiate the function with respect to x.
$x^{x}-2^{\sin x}$
Let $y=x^{x}-2^{\sin x}$
Also, let $x^{x}=u$ and $2^{\sin x}=v$
$\therefore y=u-v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}-\frac{d v}{d x}$
$u=x^{X}$
Taking logarithm on both the sides, we obtain
$\log u=x \log x$
Differentiating both sides with respect to x, we obtain
$\frac{1}{u} \frac{d u}{d x}=\left[\frac{d}{d x}(x) \times \log x+x \times \frac{d}{d x}(\log x)\right]$
$\Rightarrow \frac{d u}{d x}=u\left[1 \times \log x+x \times \frac{1}{x}\right]$
$\Rightarrow \frac{d u}{d x}=x^{x}(\log x+1)$
$\Rightarrow \frac{d u}{d x}=x^{x}(1+\log x)$
$v=2^{\sin x}$
Taking logarithm on both the sides with respect to x, we obtain
$\log v=\sin x \cdot \log 2$
Differentiating both sides with respect to x, we obtain
$\frac{1}{v} \cdot \frac{d v}{d x}=\log 2 \cdot \frac{d}{d x}(\sin x)$
$\Rightarrow \frac{d v}{d x}=v \log 2 \cos x$
$\Rightarrow \frac{d v}{d x}=2^{\sin x} \cos x \log 2$
$\therefore \frac{d y}{d x}=x^{x}(1+\log x)-2^{\sin x} \cos x \log 2$