Differentiate the function with respect to x.
$(\sin x)^{x}+\sin ^{-1} \sqrt{x}$
Let $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$
Also, let $u=(\sin x)^{x}$ and $v=\sin ^{-1} \sqrt{x}$
$\therefore y=u+v$
$\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$ ...(1)
$u=(\sin x)^{x}$
$\Rightarrow \log u=\log (\sin x)^{x}$
$\Rightarrow \log u=x \log (\sin x)$
Differentiating both sides with respect to $x$, we obtain
$\Rightarrow \frac{1}{u} \frac{d u}{d x}=\frac{d}{d x}(x) \times \log (\sin x)+x \times \frac{d}{d x}[\log (\sin x)]$
$\Rightarrow \frac{d u}{d x}=u\left[1 \cdot \log (\sin x)+x \cdot \frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)\right]$
$\Rightarrow \frac{d u}{d x}=(\sin x)^{x}\left[\log (\sin x)+\frac{x}{\sin x} \cdot \cos x\right]$
$\Rightarrow \frac{d u}{d x}=(\sin x)^{x}(x \cot x+\log \sin x)$ ...(2)
$v=\sin ^{-1} \sqrt{x}$
Differentiating both sides with respect to x, we obtain
$\frac{d v}{d x}=\frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \cdot \frac{d}{d x}(\sqrt{x})$
$\Rightarrow \frac{d v}{d x}=\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{x}}$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{x-x^{2}}}$
Therefore, from (1), (2), and (3), we obtain]
$\frac{d y}{d x}=(\sin x)^{x}(x \cot x+\log \sin x)+\frac{1}{2 \sqrt{x-x^{2}}}$