Question:
Differentiate the following w.r.t. x:
$\sin \left(\tan ^{-1} e^{-x}\right)$
Solution:
Let $y=\sin \left(\tan ^{-1} e^{-x}\right)$
By using the chain rule, we obtain
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin \left(\tan ^{-1} e^{-x}\right)\right]$
$=\cos \left(\tan ^{-1} e^{-x}\right) \cdot \frac{d}{d x}\left(\tan ^{-1} e^{-x}\right)$
$=\cos \left(\tan ^{-1} e^{-x}\right) \cdot \frac{1}{1+\left(e^{-x}\right)^{2}} \cdot \frac{d}{d x}\left(e^{-x}\right)$
$=\frac{\cos \left(\tan ^{-1} e^{-x}\right)}{1+e^{-2 x}} \cdot e^{-x} \cdot \frac{d}{d x}(-x)$
$=\frac{e^{-x} \cos \left(\tan ^{-1} e^{-x}\right)}{1+e^{-2 x}} \times(-1)$
$=\frac{-e^{-x} \cos \left(\tan ^{-1} e^{-x}\right)}{1+e^{-2 x}}$