Question:
Differentiate the following w.r.t. x:
$e^{\sin ^{-1} x}$
Solution:
Let $y=e^{\sin ^{-1} x}$
By using the chain rule, we obtain
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sin ^{-1} x}\right)$
$\Rightarrow \frac{d y}{d x}=e^{\sin ^{-1} x} \cdot \frac{d}{d x}\left(\sin ^{-1} x\right)$]'
$=e^{\sin ^{-1} x} \cdot \frac{1}{\sqrt{1-x^{2}}}$
$=\frac{e^{\sin ^{-1} x}}{\sqrt{1-x^{2}}}$
$\therefore \frac{d y}{d x}=\frac{e^{\sin ^{-1} x}}{\sqrt{1-x^{2}}}, x \in(-1,1)$