Differentiate the following functions with respect to $x$ :
$\sin ^{2}\{\log (2 x+3)\}$
Let $y=\sin ^{2}\{\log (2 x+3)\}$
On differentiating y with respect to $x$, we get
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin ^{2}\{\log (2 \mathrm{x}+3)\}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \sin ^{2-1}\{\log (2 \mathrm{x}+3)\} \frac{\mathrm{d}}{\mathrm{dx}}[\sin \{\log (2 \mathrm{x}+3)\}]$ [chain rule]
$\Rightarrow \frac{d y}{d x}=2 \sin \{\log (2 x+3)\} \frac{d}{d x}[\sin \{\log (2 x+3)\}]$
We have $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=2 \sin \{\log (2 x+3)\} \cos \{\log (2 x+3)\} \frac{d}{d x}[\log (2 x+3)]$
As $\sin (2 \theta)=2 \sin \theta \cos \theta$, we have
$\frac{d y}{d x}=\sin \{2 \times \log (2 x+3)\} \frac{d}{d x}[\log (2 x+3)]$
$\frac{d y}{d x}=\sin \{2 \log (2 x+3)\} \frac{d}{d x}[\log (2 x+3)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\sin \{2 \log (2 x+3)\}\left[\frac{1}{(2 x+3)} \frac{d}{d x}(2 x+3)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sin \{2 \log (2 x+3)\}}{2 x+3} \frac{d}{d x}(2 x+3)$
$\Rightarrow \frac{d y}{d x}=\frac{\sin \{2 \log (2 x+3)\}}{2 x+3}\left[\frac{d}{d x}(2 x)+\frac{d}{d x}(3)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sin \{2 \log (2 x+3)\}}{2 x+3}\left[2 \frac{d}{d x}(x)+\frac{d}{d x}(3)\right]$
However, $\frac{d}{d x}(x)=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin \{2 \log (2 \mathrm{x}+3)\}}{2 \mathrm{x}+3}[2 \times 1+0]$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin (2 \log (2 \mathrm{x}+3)\}}{2 \mathrm{x}+3} \times 2$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \sin \{2 \log (2 \mathrm{x}+3)\}}{2 \mathrm{x}+3}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin ^{2}\{\log (2 \mathrm{x}+3)\}\right]=\frac{2 \sin (2 \log (2 \mathrm{x}+3))}{2 \mathrm{x}+3}$