Question:
Differentiate the following functions with respect to $x$ :
$\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\}, \frac{\pi}{4}
Solution:
$y=\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\}$
Now
$y=\cos ^{-1}\left\{\cos x \frac{1}{\sqrt{2}}+\sin x \frac{1}{\sqrt{2}}\right\}$
$y=\cos ^{-1}\left\{\cos x \cos \left(\frac{\pi}{4}\right)+\sin x \sin \left(\frac{\pi}{4}\right)\right\}$
Using $\cos (A-B)=\cos A \cos B+\sin A \sin B$
$y=\cos ^{-1}\left\{\cos \left(x-\frac{\pi}{4}\right)\right\}$
Considering the limits,
$-\frac{\pi}{4} $-\frac{\pi}{2} Now, $y=-x+\frac{\pi}{4}$ Differentiating it w.r.t $x$, $\frac{\mathrm{dy}}{\mathrm{dx}}=-1$