Differentiate the following functions with respect to $x$ :
$3^{e^{x}}$
Let $y=3^{\mathrm{e}^{\mathrm{x}}}$
On differentiating y with respect to $x$, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(3^{e^{x}}\right)$
We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3^{\mathrm{e}^{\mathrm{x}}} \log 3 \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)$ [using chain rule]
We have $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=3^{e^{x}} \log 3 \times e^{x}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=3^{\mathrm{e}^{\mathrm{x}}} \mathrm{e}^{\mathrm{x}} \log 3$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(3^{\mathrm{e}^{\mathrm{x}}}\right)=3^{\mathrm{e}^{\mathrm{x}}} \mathrm{e}^{\mathrm{x}} \log 3$