Question:
Differentiate the following functions with respect to $x$ :
$\sin ^{-1}\left\{\sqrt{1-x^{2}}\right\}, 0
Solution:
$y=\sin ^{-1}\left\{\sqrt{1-x^{2}}\right\}$
let $x=\cos \theta$
Now
$y=\sin ^{-1}\left\{\sqrt{1-\cos ^{2} \theta}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\sin ^{-1}(\sin \theta)$
Considering the limits,
$0 $0<\cos \theta<1$ $0<\theta<\frac{\pi}{2}$ Now, $y=\sin ^{-1}(\sin \theta)$ $y=\theta$ $y=\cos ^{-1} x$ Differentiating w.r.t $x$, we get $\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$