Question:
Differentiate the following functions with respect to $x$ :
$\sin (\log x)$
Solution:
Let $y=\sin (\log x)$
On differentiating $y$ with respect to $x$, we get
$\frac{d y}{d x}=\frac{d}{d x}[\sin (\log x)]$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\cos (\log \mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})$ [using chain rule]
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\cos (\log \mathrm{x}) \times \frac{1}{\mathrm{x}}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\mathrm{x}} \cos (\log \mathrm{x})$
Thus, $\frac{d}{d x}[\sin (\log x)]=\frac{1}{x} \cos (\log x)$