Differentiate the following functions with respect to $x$ :
$\tan ^{-1}\left\{\frac{4 x}{1-4 x^{2}}\right\},-\frac{1}{2}
$y=\tan ^{-1}\left\{\frac{4 x}{1-4 x^{2}}\right\}$
Let $2 x=\tan \theta$
$y=\tan ^{-1}\left\{\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right\}$
Using $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$y=\tan ^{-1}(\tan 2 \theta)$
Considering the limits,
$-\frac{1}{2} $-1<2 x<1$ $-1<\tan \theta<1$ $-\frac{\pi}{4}<\theta<\frac{\pi}{4}$ $-\frac{\pi}{2}<2 \theta<\frac{\pi}{2}$ Now, $y=\tan ^{-1}(\tan 2 \theta)$ $y=2 \theta$ $y=2 \tan ^{-1}(2 x)$ Differentiating w.r.t $\mathrm{x}$, we get $\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} 2 x\right)$ $\frac{d y}{d x}=2 \times \frac{2}{1+(2 x)^{2}}$ $\frac{d y}{d x}=\frac{4}{1+4 x^{2}}$