Differentiate the following functions with respect to $x$ :
$\sin (\log \sin x)$
Let $y=\sin (\log \sin x)$
On differentiating $y$ with respect to $x$, we get
$\frac{d y}{d x}=\frac{d}{d x}[\sin (\log (\sin x))]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}(\sin \mathrm{x})=\cos \mathrm{x}$
$\Rightarrow \frac{d y}{d x}=\cos (\log (\sin x)) \frac{d}{d x}[\log (\sin x)]$ [using chain rule]
We have $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\cos (\log (\sin x))\left[\frac{1}{\sin x} \frac{d}{d x}(\sin x)\right]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x} \cos (\log (\sin x)) \frac{d}{d x}(\sin x)$
However, $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x} \cos (\log (\sin x)) \cos x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\left(\frac{\cos \mathrm{x}}{\sin \mathrm{x}}\right) \cos (\log (\sin \mathrm{x}))$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\cot \mathrm{x} \cos (\log (\sin \mathrm{x}))$
Thus, $\frac{d}{d x}[\sin (\log (\sin x))]=\cot x \cos (\log (\sin x))$