Differentiate the following functions with respect to $x$ :
$\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}, 0
$y=\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}$
Let $x=\cos 2 \theta$
Now
$y=\sin ^{-1}\left\{\frac{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}{2}\right\}$
Using $1-2 \sin ^{2} \theta=\cos 2 \theta$ and $2 \cos ^{2} \theta-1=\cos 2 \theta$
$y=\sin ^{-1}\left\{\frac{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}{2}\right\}$
Now
$y=\sin ^{-1}\left\{\sin \theta \frac{1}{\sqrt{2}}+\cos \theta \frac{1}{\sqrt{2}}\right\}$
$y=\sin ^{-1}\left\{\sin \theta \cos \left(\frac{\pi}{4}\right)+\cos \theta \sin \left(\frac{\pi}{4}\right)\right\}$
Using $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$
Considering the limits,
$0 $0<\cos 2 \theta<1$ $0<2 \theta<\frac{\pi}{2}$ $0<\theta<\frac{\pi}{4}$ Now, $y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$ $y=\theta+\frac{\pi}{4}$ $y=\frac{1}{2} \cos ^{-1} x+\frac{\pi}{4}$ Differentiating w.r.t $x$, we get $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{2} \cos ^{-1} \mathrm{x}+\frac{\pi}{4}\right)$ $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2} \times \frac{-1}{\sqrt{1-\mathrm{x}^{2}}}$ $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{2 \sqrt{1-\mathrm{x}^{2}}}$