Differentiate the following functions with respect to $x$ :
$\tan ^{-1}\left\{\frac{\mathrm{x}}{1+\sqrt{1-\mathrm{x}^{2}}}\right\},-1<\mathrm{x}<1$
$y=\tan ^{-1}\left\{\frac{x}{1+\sqrt{1-x^{2}}}\right\}$
Let $x=\sin \theta$
Now
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\sqrt{1-\sin ^{2} \theta}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\sqrt{\cos ^{2} \theta}}\right\}$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\cos \theta}\right\}$
Using $2 \cos ^{2} \theta=1+\cos 2 \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\tan ^{-1}\left\{\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}\right\}$
$y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
Considering the limits,
$-1 $-1<\sin \theta<1$ $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ $-\frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{4}$ Now, $y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$ $y=\frac{\theta}{2}$ $y=\frac{1}{2} \sin ^{-1} x$ Differentiating w.r.t $\mathrm{x}$, we get $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{2} \sin ^{-1} \mathrm{x}\right)$ $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \sqrt{1-\mathrm{x}^{2}}}$