Question:
Differentiate the following functions with respect to $x$ :
$\sin ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)$
Solution:
$y=\sin ^{-1}\left\{\frac{1}{\sqrt{1+x^{2}}}\right\}$
Let $x=\cot \theta$
Now
$y=\sin ^{-1}\left\{\frac{1}{\sqrt{1+\cot ^{2} \theta}}\right\}$
Using, $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
Now
$y=\sin ^{-1}\left\{\frac{1}{\sqrt{\operatorname{cosec}^{2} \theta}}\right\}$
$y=\sin ^{-1}\left\{\frac{1}{\operatorname{cosec} \theta}\right\}$
$y=\sin ^{-1}(\sin \theta)$
$y=\theta$
$y=\cot ^{-1} x$
Differentiating w.r.t $x$ we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\cot ^{-1} x\right)$
$\frac{d y}{d x}=-\frac{1}{1+x^{2}}$