Question:
Differentiate the following functions from first principles :
$e^{-x}$
Solution:
We have to find the derivative of $\mathrm{e}^{-\mathrm{x}}$ with the first principle method, so,
$f(x)=e^{-x}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{-(x+h)}-e^{-x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{-x}\left(e^{-h}-1\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{-x}\left(e^{-h}-1\right)(-1)}{h(-1)}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$ ]
$f^{\prime}(x)=-e^{-x}$