Question:
Differentiate the following functions from first principles:
$e^{3 x}$
Solution:
We have to find the derivative of $\mathrm{e}^{3 x}$ with the first principle method, so,
$f(x)=e^{3 x}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{3(x+h)}-e^{3 x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{2 x}\left(e^{2 h}-1\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{3 x}\left(e^{3 h}-1\right) 3}{3 h}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$ ]
$f^{\prime}(x)=3 e^{3 x}$