Differentiate the following functions:
(i) $(2 x+3)(3 x-5)$
(ii) $x(1+x)^{3}$
(iii) $\left(\sqrt{\mathrm{x}}+\frac{1}{\mathrm{x}}\right)\left(\mathrm{x}-\frac{1}{\sqrt{\mathrm{x}}}\right)$
(iv) $\left(x-\frac{1}{x}\right)^{2}$
(v) $\left(x^{2}-\frac{1}{x^{2}}\right)^{3}$
(vi) $\left(2 x^{2}+5 x-1\right)(x-3)$
Formula:
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{g}(\mathrm{x}))=\frac{\mathrm{d}}{\mathrm{dg}} \mathrm{f}(\mathrm{g}) \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{g}$
Chain rule -
$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{uv})=\mathrm{u} \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{v}+\mathrm{v} \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{u}$
Where u and v are the functions of x.
(i) $(2 x+3)(3 x-5)$
Applying, Chain rule
Here, $u=2 x+3$
$V=3 x-5$
$\frac{\mathrm{d}}{\mathrm{dx}}(2 \mathrm{x}+3)(3 \mathrm{x}-5)=(2 \mathrm{x}+3) \frac{\mathrm{d}}{\mathrm{dx}}(3 \mathrm{x}-5)+(3 \mathrm{x}-5) \frac{\mathrm{d}}{\mathrm{dx}}(2 \mathrm{x}+3)$
$=(2 x+3)\left(3 x^{1-1}+0\right)+(3 x-5)\left(2 x^{1-1}+0\right)$
$=6 x+9+6 x-10$
$=12 x-1$
(ii) $x(1+x)^{3}$
Applying, Chain rule
Here, u = x
$V=(1+x)^{3}$
$\frac{d}{d x} \times(1+x)^{3}=x \frac{d}{d x}(1+x) 3+(1+x) 3 \frac{d}{d x}(x)$
$=x \times 3 \times(1+x)^{2}+(1+x)^{3}(1)$
$=(1+x)^{2}(3 x+x+1)$
$=(1+x)^{2}(4 x+1)$
(iii) $\left(\sqrt{x}+\frac{1}{x}\right)\left(x-\frac{1}{\sqrt{x}}\right)=\left(x^{1 / 2}+x^{-1}\right)\left(x-x^{-1 / 2}\right)$
Applying, Chain rule
Here, $u=\left(x^{1 / 2}+x^{-1}\right)$
$V=\left(X-X^{-1 / 2}\right)$
$\frac{d}{d x}\left(x^{1 / 2}+x^{-1}\right)\left(x-x^{-1 / 2}\right)$
$=\left(x^{1 / 2}+x^{-1}\right) \frac{d}{d x}\left(x-x^{-1 / 2}\right)+\left(x-x^{-1 / 2}\right) \frac{d}{d x}\left(x^{1 / 2}+x^{-1}\right)$
$=\left(x^{1 / 2}+x^{-1}\right)\left(1+\frac{1}{2} x^{-3 / 2}\right)+\left(x-x^{-1 / 2}\right)\left(\frac{1}{2} x^{-1 / 2}-x^{-2}\right)$
$=x^{1 / 2}+x^{-1}+\frac{1}{2} x^{-1}+\frac{1}{2} x^{-5 / 2}+\frac{1}{2} x^{1 / 2}-x^{-1}-\frac{1}{2} x^{-1}+x^{-5 / 2}$
$=\frac{3}{2} x^{1 / 2}+\frac{3}{2} x^{-5 / 2}$
(iv)
$\left(x-\frac{1}{x}\right)^{2}$
Differentiation of composite function can be done by
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{g}(\mathrm{x}))=\frac{\mathrm{d}}{\mathrm{dg}} \mathrm{f}(\mathrm{g}) \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{g}$
Here, $f(g)=g^{2}, g(x)=x-\frac{1}{x}$
$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)^{2}=2 \mathrm{~g} \times\left(1+\frac{1}{\mathrm{x}^{2}}\right)$
$=2\left(x-\frac{1}{x}\right)\left(1+\frac{1}{x^{2}}\right)$
$=2\left(x+\frac{1}{x}-\frac{1}{x}+\frac{1}{x^{3}}\right)$
$=2\left(x+\frac{1}{x^{3}}\right)$
(v)
$\left(x^{2}-\frac{1}{x^{2}}\right)^{3}$
Differentiation of composite function can be done by
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{g}(\mathrm{x}))=\frac{\mathrm{d}}{\mathrm{dg}} \mathrm{f}(\mathrm{g}) \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{g}$
Here, $f(g)=g^{3}, g(x)=x^{2}-\frac{1}{x^{2}}$
$\frac{d}{d x}\left(x^{2}-\frac{1}{x^{2}}\right)^{3}=3 g^{2} \times\left(2 x-\frac{2}{x^{3}}\right)$
$=3\left(x^{2}-\frac{1}{x^{2}}\right)^{2}\left(2 x-\frac{2}{x^{3}}\right)$
$=3\left(2 x^{3}-\frac{2}{x}-\frac{2}{x}+\frac{2}{x^{5}}\right)$
$=3\left(2 x^{3}-\frac{4}{x}+\frac{2}{x^{5}}\right)$
(vi) $\left(2 x^{2}+5 x-1\right)(x-3)$
Applying, Chain rule
Here, $u=\left(2 x^{2}+5 x-1\right)$
$V=(x-3)$
$\frac{d}{d x}\left(2 x^{2}+5 x-1\right)(x-3)$
$=\left(2 x^{2}+5 x-1\right) \frac{d}{d x}(x-3)+(x-3) \frac{d}{d x}\left(2 x^{2}+5 x-1\right)$
$=\left(2 x^{2}+5 x-1\right) \times 1+(x-3)(4 x+5)$
$=2 x^{2}+5 x-1+4 x^{2}-7 x-15$
$=6 x^{2}-2 x-16$