Differentiate each of the following functions from the first principal:
$x^{2} e^{x}$
We have to find the derivative of $x^{2} e^{x}$ with the first principle method, so,
$f(x)=x^{2} e^{x}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{2} e^{(x+h)}-x^{2} e^{x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left(x^{2}+h^{2}+2 h x\right) e^{(x+h)}-x^{2} e^{x}}{h}$
[By using $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x^{2} e^{x}\left\{\left(h^{2}+2 h x+1\right) e^{(h)}-1\right]}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x^{2} e^{x}\left(e^{h}-1\right)}{h}+\lim _{h \rightarrow 0} \frac{e^{(x+h)}\left[h^{2}+2 h x\right]}{h}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$ ]
$f^{\prime}(x)=x^{2} e^{x}+\lim _{h \rightarrow 0} e^{(x+h)}[h+2 x]$
$f^{\prime}(x)=x^{2} e^{x}+2 x e^{x}$