Question:
Differentiate:
$x^{4} \tan x$
Solution:
To find: Differentiation of $x^{4} \tan x$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)
$\frac{d x^{n}}{d x}=n x^{n-1}$
(iii)
$\frac{d \tan x}{d x}=\sec ^{2} x$
Let us take $u=x^{4}$ and $v=\tan x$
$u^{\prime}=\frac{d u}{d x}=\frac{d x^{4}}{d x}=4 x^{3}$
$v^{\prime}=\frac{d v}{d x}=\frac{d \tan x}{d x}=\sec ^{2} x$
Putting the above obtained values in the formula:-
$(U V)^{\prime}=U^{\prime} V+U V^{\prime}$
$\left(x^{4} \tan x\right)^{\prime}=4 x^{3} \times \tan x+x^{4} \times \sec ^{2} x$
$=4 x^{3} \tan x+x^{4} \sec ^{2} x$
$=x^{3}\left(4 \tan x+x \sec ^{2} x\right)$
Ans) $x^{3}\left(4 \tan x+x \sec ^{2} x\right)$