Differentiate:
$(3 x-5)\left(4 x^{2}-3+e^{x}\right)$
To find: Differentiation of $(3 x-5)\left(4 x^{2}-3+e^{x}\right)$
Formula used: (i) (uv)' $=u^{\prime} v+u v^{\prime}$ (Leibnitz or product rule)
(ii)
$\frac{d x^{n}}{d x}=n x^{n-1}$
(iii)
$\frac{d e^{x}}{d x}=e^{x}$
Let us take $u=(3 x-5)$ and $v=\left(4 x^{2}-3+e^{x}\right)$
$u^{\prime}=\frac{d u}{d x}=\frac{d(3 x-5)}{d x}=3$
$v^{\prime}=\frac{d v}{d x}=\frac{d\left(4 x^{2}-3+e^{x}\right)}{d x}=\left(8 x+e^{x}\right)$
Putting the above obtained values in the formula :-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left[(3 x-5)\left(4 x^{2}-3+e^{x}\right)\right]^{\prime}=3 x\left(4 x^{2}-3+e^{x}\right)+(3 x-5) \times\left(8 x+e^{x}\right)$
$=12 x^{2}-9+3 e^{x}+24 x^{2}+3 x e^{x}-40 x-5 e^{x}$
$=36 x^{2}+x\left(3 e^{x}-40\right)-9-2 e^{x}$
Ans) $36 x^{2}+x\left(3 e^{x}-40\right)-9-2 e^{x}$