Question:
Differentiate:
$e^{x} \cos x$
Solution:
To find: Differentiation of $e^{x} \cos x$
Formula used: (i) (uv)′ = u′v + uv′ (Leibnitz or product rule)
(ii)
$\frac{d e^{x}}{d x}=e^{x}$
(iii)
$\frac{d \cos x}{d x}=-\sin x$
Let us take $u=e^{x}$ and $v=\cos x$
$u^{\prime}=\frac{d u}{d x}=\frac{d e^{x}}{d x}=e^{x}$
$v^{\prime}=\frac{d v}{d x}=\frac{d \cos x}{d x}=-\sin x$
Putting the above obtained values in the formula:-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left(e^{x} \cos x\right)^{\prime}=e^{x} x \cos x+e^{x} x-\sin x$
$=e^{x} \cos x-e^{x} \sin x$
$=e^{x}(\cos x-\sin x)$
Ans) $e^{x}(\cos x-\sin x)$