Differentiate:
$\left(x^{2}-4 x+5\right)\left(x^{3}-2\right)$
To find: Differentiation of $\left(x^{2}-4 x+5\right)\left(x^{3}-2\right)$
Formula used: (i) (uv) $^{\prime}=u^{\prime} v+u v^{\prime}$ (Leibnitz or product rule)
(ii)
$\frac{d x^{n}}{d x}=n x^{n-1}$
Let us take $u=\left(x^{2}-4 x+5\right)$ and $v=\left(x^{3}-2\right)$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(x^{2}-4 x+5\right)}{d x}=2 x-4$
$v^{\prime}=\frac{d v}{d x}=\frac{d\left(x^{3}-2\right)}{d x}=3 x^{2}$
Putting the above obtained values in the formula:-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left.\left(x^{2}-4 x+5\right)\left(x^{3}-2\right)\right]^{\prime}=(2 x-4) \times\left(x^{3}-2\right)+\left(x^{2}-4 x+5\right) \times\left(3 x^{2}\right)$
$=2 x^{4}-4 x-4 x^{3}+8+3 x^{4}-12 x^{3}+15 x^{2}$
$=5 x^{4}-16 x^{3}+15 x^{2}-4 x+8$
Ans) $5 x^{4}-16 x^{3}+15 x^{2}-4 x+8$