Question:
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
Solution:
Let the two positive numbers be $x$ and y. Then,
$x+y=15$ ....(1)
Now,
$z=x^{2}+y^{2}$
$\Rightarrow z=x^{2}+(15-x)^{2}$ [From eq. (1)]
$\Rightarrow z=x^{2}+x^{2}+225-30 x$
$\Rightarrow z=2 x^{2}+225-30 x$
$\Rightarrow \frac{d z}{d x}=4 x-30$
For maximum or minimum values of $\mathrm{z}$, we must have
$\frac{d z}{d x}=0$
$\Rightarrow 4 x-30=0$
$\Rightarrow x=\frac{15}{2}$
$\frac{d^{2} z}{d x^{2}}=4>0$
Substituting $x=\frac{15}{2}$ in $(1)$, we get
$y=\frac{15}{2}$
Thus, $z$ is minimum when $x=y=\frac{15}{2}$.