Question:
Determine two consecutive multiples of 3 whose product is 270.
Solution:
Let the required number be $3 x$ and $(3 x+3)$
Then according to question
$(3 x)(3 x+3)=270$
$9 x^{2}+9 x-270=0$
$9\left(x^{2}+x-30\right)=0$
$x^{2}+x-30=0$
$x^{2}+x-30=0$
$x^{2}-5 x+6 x-30=0$
$x(x-5)+6(x-5)=0$
$(x-5)(x+6)=0$
$(x-5)=0$
$x=5$
Or
$(x+6)=0$
$x=-6$
Since, x being a positive number, so x cannot be negative.
Therefore,
When $x=5$ then positive integer
$3 x=3 \times 5$
$=15$
And
$3 x+3=3 \times 5+3$
$=18$
Thus, three consecutive positive integer be 15,18