Determine the values of $x$ for which the function $f(x)=x^{2}-6 x+9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y=x^{2}-6 x+9$ where the normal is parallel to the liney $=x+5$.
Given:- Function $f(x)=x^{2}-6 x+9$ and a line parallel to $y=x+5$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=x^{2}-6 x+9$
$\Rightarrow f(x)=\frac{d}{d x}\left(x^{2}-6 x+9\right)$
$\Rightarrow f^{\prime}(x)=2 x-6$
$\Rightarrow f^{\prime}(x)=2(x-3)$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 2(x-3)=0$
$\Rightarrow(x-3)=0$
$\Rightarrow x=3$
clearly, $f^{\prime}(x)>0$ if $x>3$
and $f^{\prime}(x)<0$ if $x<3$
Thus, $f(x)$ increases on $(3, \infty)$
and $f(x)$ is decreasing on interval $x \in(-\infty, 3)$
Now, lets find coordinates of point
Equation of curve is
$f(x)=x^{2}-6 x+9$
slope of this curve is given by
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-6 \mathrm{x}+9\right)$
$\Rightarrow \mathrm{m}_{1}=2 \mathrm{x}-6$
and Equation of line is
$y=x+5$
slope of this curve is given by
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x}+5)$
$\Rightarrow \mathrm{m}_{2}=1$
Since slope of curve (i.e slope of its normal) is parallel to line
Therefore, they follow the relation
$\Rightarrow \frac{-1}{m_{1}}=m_{2}$
$\Rightarrow \frac{-1}{2 x-6}=1$
$\Rightarrow 2 x-6=-1$
$\Rightarrow x=\frac{5}{2}$
Thus putting the value of $\mathrm{x}$ in equation of curve, we get
$\Rightarrow y=x^{2}-6 x+9$
$\Rightarrow y=\left(\frac{5}{2}\right)^{2}-6\left(\frac{5}{2}\right)+9$
$\Rightarrow y=\frac{25}{4}-15+9$
$\Rightarrow y=\frac{25}{4}-6$
$\Rightarrow y=\frac{1}{4}$
Thus the required coordinates is $\left(\frac{5}{2}, \frac{1}{4}\right)$