Question:
Determine the values of $p$ for which the quadratic equation $2 x^{2}+p x+8=0$ has real roots.
Solution:
Given:
$2 x^{2}+p x+8=0$
Here,
$a=2, b=p$ and $c=8$
Discriminant $D$ is given by :
$D=\left(b^{2}-4 a c\right)$
$=p^{2}-4 \times 2 \times 8$
$=\left(p^{2}-64\right)$
If $D \geq 0$, the roots of the equation will be real.
$\Rightarrow\left(p^{2}-64\right) \geq 0$
$\Rightarrow(p+8)(p-8) \geq 0$
$\Rightarrow p \geq 8$ and $p \leq-8$
Thus, the roots of the equation are real for $p \geq 8$ and $p \leq-8$.