Question:
Determine the value of the constant k so that the function
$f(x)=\left\{\begin{array}{ll}k x^{2}, & \text { if } x \leq 2 \\ 3, & \text { if } x>2\end{array}\right.$ is continuous at $x=2$
Solution:
Given:
$f(x)=\left\{\begin{array}{l}k x^{2}, \text { if } x \leq 2 \\ 3, \text { if } x>2\end{array}\right.$
If $f(x)$ is continuous at $x=2$, then
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$ .....(1)
Now,
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} k(2-h)^{2}=4 k$
And, $f(2)=3$
From (1), we have
$4 k=3$
$\Rightarrow k=\frac{3}{4}$