Determine the points on the curve $x 2=4 y$ which are nearest to the point $(0,5)$.
Let the point $(x, y)$ on the curve $x^{2}=4 y$ be nearest to $(0,5)$. Then,
$x^{2}=4 y$
$\Rightarrow y=\frac{x^{2}}{4}$ $\ldots(1)$
Also,
$d^{2}=(x)^{2}+(y-5)^{2}$ [Using distance formula]
Now,
$Z=d^{2}=(x)^{2}+(y-5)^{2}$
$\Rightarrow Z=(x)^{2}+\left(\frac{x^{2}}{4}-5\right)^{2}$ $\left[\begin{array}{ll}\text { Using eq. } & \text { (1) }\end{array}\right]$
$\Rightarrow Z=x^{2}+\frac{x^{4}}{16}+25-\frac{5 x^{2}}{2}$
$\Rightarrow \frac{d Z}{d y}=2 x+\frac{4 x^{3}}{16}-5 x$
For maximum or minimum values of $Z$, we must have
$\frac{d Z}{d y}=0$
$\Rightarrow 2 x+\frac{4 x^{3}}{16}-5 x=0$
$\Rightarrow \frac{4 x^{3}}{16}=3 x$
$\Rightarrow x^{3}=12 x$
$\Rightarrow x^{2}=12$
$\Rightarrow x=\pm 2 \sqrt{3}$
Substituting the value of $x$ in eq. $(1)$, we get
$y=3$
Now,
$\frac{d^{2} Z}{d y^{2}}=2+\frac{12 x^{2}}{16}-5$
$\Rightarrow \frac{d^{2} Z}{d y^{2}}=9-3=6>0$
So, the required nearest point is $(\pm 2 \sqrt{3}, 3)$.