Question:
Determine the nth term of the AP whose 7th term is −1 and 16th term is 17.
Solution:
Let a be the first term and d be the common difference of the AP. Then,
$a_{7}=-1$
$\Rightarrow a+(7-1) d=-1 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+6 d=-1 \quad \ldots$ (1)
Also,
$a_{16}=17$
$\Rightarrow a+15 d=17 \quad \ldots(2)$
From (1) and (2), we get
$-1-6 d+15 d=17$
$\Rightarrow 9 d=17+1=18$
$\Rightarrow d=2$
Putting d = 2 in (1), we get
$a+6 \times 2=-1$
$\Rightarrow a=-1-12=-13$
$\therefore a_{n}=a+(n-1) d$
$=-13+(n-1) \times 2$
$=2 n-15$
Hence, the nth term of the AP is (2n − 15).