Define a relation R from Z to Z, given by

Question:

Define a relation R from Z to Z, given by

$\mathbf{R}=\{(\mathbf{a}, \mathbf{b}): \mathbf{a}, \mathbf{b} \in \mathbf{Z}$ and $(\mathbf{a}-\mathbf{b})$ is an integer.

Find dom (R) and range (R).

 

Solution:

Given: $R=\{(a, b): a, b \in Z$ and $(a-b)$ is an integer

The condition satisfies for all the values of a and b to be any integer.

So, $R=\{(a, b):$ for all $a, b \in(-\infty, \infty)\}$

$\operatorname{Dom}(R)=\{-\infty, \infty\}$

Range $(R)=\{-\infty, \infty\}$

 

Leave a comment