Question:
D is a point on side QR of ΔPQR such that PD ⊥ QR. Will it be correct to say that ΔPQD ~ ΔRPD? Why?
Solution:
False
In ΔPQD and ΔRPD,
PD = PD [common side]
∠PDQ = ∠PDR [each 90°]
Here, no other sides or angles are equal, so we can say that ∠PQD is not similar to ΔRPD. But, if ∠P = 90°,
then ∠DPQ = ∠PRD
[each equal to 90° – ∠0 and by ASA similarity criterion, ΔPQD ~ΔRPD]