$\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$

Question.

$\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$

solution:

L.H.S. $=\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]$

$=\sin x \cos x[\tan x+\cot x]$

$=\sin x \cos x\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right)$

$=(\sin x \cos x)\left[\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right]$

$=1=\mathrm{R} . \mathrm{H} \mathrm{S}$

Leave a comment