Question:
cos 40° + cos 80° + cos 160° + cos 240° =
(a) 0
(b) 1
(c) $\frac{1}{2}$
(d) $-\frac{1}{2}$
Solution:
(d) $-\frac{1}{2}$
$\cos 40^{\circ}+\cos 80^{\circ}+\cos 160^{\circ}+\cos 240^{\circ}$
$=2 \cos \left(\frac{40^{\circ}+80^{\circ}}{2}\right) \cos \left(\frac{40^{\circ}-80^{\circ}}{2}\right)+\cos 160^{\circ}-\cos \left(180^{\circ}+60^{\circ}\right)$
$\left[\because \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$=2 \cos 60^{\circ} \cos \left(-20^{\circ}\right)+\cos 160^{\circ}-\frac{1}{2}$
$=2 \times \frac{1}{2} \cos 20^{\circ}+\cos 160^{\circ}-\frac{1}{2}$
$=-\cos (180-20)^{\circ}+\cos 160^{\circ}-\frac{1}{2}$
$=-\frac{1}{2}$