Question:
cos 35° + cos 85° + cos 155° =
(a) 0
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{1}{\sqrt{2}}$
(d) cos 275°
Solution:
(a) 0
$\cos 35^{\circ}+\cos 85^{\circ}+\cos 155^{\circ}$
$=2 \cos \left(\frac{35^{\circ}+85^{\circ}}{2}\right) \cos \left(\frac{35^{\circ}-85^{\circ}}{2}\right)+\cos 155^{\circ} \quad\left[\because \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$=2 \cos 60^{\circ} \cos \left(-25^{\circ}\right)+\cos 155^{\circ}$
$=2 \times \frac{1}{2} \cos 25^{\circ}+\cos 155^{\circ}$
$=\cos 25^{\circ}+\cos 155^{\circ}$
$=2 \cos \left(\frac{25^{\circ}+155^{\circ}}{2}\right) \cos \left(\frac{25^{\circ}-155^{\circ}}{2}\right)$
$=2 \cos 90^{\circ} \cos 65^{\circ}$
$=0$