cos 2θ cos 2ϕ + sin

Question:

cos 2θ cos 2ϕ + sin2(θ – ϕ) – sin2(θ + ϕ) is equal to

(a) sin 2 (θ + ϕ)

(b) cos 2 (θ + ϕ)

(c) sin 2 (θ – ϕ)

(d) cos 2 (θ – ϕ)

Solution:

$\cos 2 \theta \cos 2 \phi+\sin ^{2}(\theta-\phi)-\sin ^{2}(\theta+\phi)$

$=\cos 2 \theta \cos 2 \phi+\sin (\theta-\phi+\theta+\phi) \sin (\theta-\phi-\theta-\phi)$ (using identity $\left.\sin ^{2} A-\sin ^{2} B=\sin (A+B) \sin (A-B)\right)$

$=\cos 2 \theta \cos 2 \phi+\sin (2 \theta) \sin (-2 \phi)$

$=\cos 2 \theta \cos 2 \phi-\sin 2 \theta \sin 2 \phi \quad(\because \sin (-x)=-\sin x)$

$=\cos (2 \theta+2 \phi) \quad$ (using identity: $\quad \cos a \cos b-\sin a \sin b=\cos (a+b)$ )

$=\cos 2(\theta+\phi)$

Hence, the correct answer is option B.

Leave a comment