(cos 0° + sin 30° + sin 45°) (sin 90° + cos 60° – cos 45°) = ?
(a) $\frac{7}{4}$
(b) $\frac{5}{6}$
(c) $\frac{3}{5}$
(d) $\frac{5}{8}$
As we know that,
$\cos 0^{\circ}=1$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\sin 30^{\circ}=\frac{1}{2}$
$\sin 90^{\circ}=1$
$\cos 60^{\circ}=\frac{1}{2}$
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
By substituting these values, we get
$\left(\cos 0^{\circ}+\sin 30^{\circ}+\sin 45^{\circ}\right)\left(\sin 90^{\circ}+\cos 60^{\circ}-\cos 45^{\circ}\right)=\left(1+\frac{1}{2}+\frac{1}{\sqrt{2}}\right)\left(1+\frac{1}{2}-\frac{1}{\sqrt{2}}\right)$
$=\left(\left(1+\frac{1}{2}\right)+\left(\frac{1}{\sqrt{2}}\right)\right)\left(\left(1+\frac{1}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\right)$
$=\left(1+\frac{1}{2}\right)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=1+\frac{1}{4}+2(1)\left(\frac{1}{2}\right)-\frac{1}{2}$
$=1+\frac{1}{4}+1-\frac{1}{2}$
$=\frac{4+1+4-2}{4}$
$=\frac{7}{4}$
Hence, the correct option is (a).