Question.
Convert the following into basic units
(i)28.7 pm
(ii)15.15 pm
(iii)25365 mg
Convert the following into basic units
(i)28.7 pm
(ii)15.15 pm
(iii)25365 mg
Solution:
(i) $28.7 \mathrm{pm}$ :
$1 \mathrm{pm}=10^{-12} \mathrm{~m}$
$\therefore 28.7 \mathrm{pm}=28.7 \times 10^{-12} \mathrm{~m}$
$=2.87 \times 10^{-11} \mathrm{~m}$
(ii) $15.15 \mathrm{pm}$ :
$1 \mathrm{pm}=10^{-12} \mathrm{~m}$
$\therefore 15.15 \mathrm{pm}=15.15 \times 10^{-12} \mathrm{~m}$
$=1.515 \times 10^{-12} \mathrm{~m}$
(iii) $25365 \mathrm{mg}$ :
$1 \mathrm{mg}=10^{-3} \mathrm{~g}$
$25365 \mathrm{mg}=2.5365 \times 10^{4} \times 10^{-3} \mathrm{~g}$
Since,
$1 \mathrm{~g}=10^{-3} \mathrm{~kg}$
$2.5365 \times 10^{1} \mathrm{~g}=2.5365 \times 10^{-1} \times 10^{-3} \mathrm{~kg}$
$\therefore 25365 \mathrm{mg}=2.5365 \times 10^{-2} \mathrm{~kg}$
(i) $28.7 \mathrm{pm}$ :
$1 \mathrm{pm}=10^{-12} \mathrm{~m}$
$\therefore 28.7 \mathrm{pm}=28.7 \times 10^{-12} \mathrm{~m}$
$=2.87 \times 10^{-11} \mathrm{~m}$
(ii) $15.15 \mathrm{pm}$ :
$1 \mathrm{pm}=10^{-12} \mathrm{~m}$
$\therefore 15.15 \mathrm{pm}=15.15 \times 10^{-12} \mathrm{~m}$
$=1.515 \times 10^{-12} \mathrm{~m}$
(iii) $25365 \mathrm{mg}$ :
$1 \mathrm{mg}=10^{-3} \mathrm{~g}$
$25365 \mathrm{mg}=2.5365 \times 10^{4} \times 10^{-3} \mathrm{~g}$
Since,
$1 \mathrm{~g}=10^{-3} \mathrm{~kg}$
$2.5365 \times 10^{1} \mathrm{~g}=2.5365 \times 10^{-1} \times 10^{-3} \mathrm{~kg}$
$\therefore 25365 \mathrm{mg}=2.5365 \times 10^{-2} \mathrm{~kg}$