Consider two satellites

Question:

Consider two satellites $S_{1}$ and $S_{2}$ with periods of revolution $1 \mathrm{hr}$. and $8 \mathrm{hr}$.

respectively revolving around a planet in circular orbits. The ratio of

angular velocity of satellite $S_{1}$ to the angular velocity of satellite $S_{2}$ is -

  1. (1) $8: 1$

  2. (2) $1: 8$

  3. (3) $2: 1$

  4. (4) $1: 4$


Correct Option: 1

Solution:

(1)

We know that $\omega=\frac{2 \pi}{T}$

given : Ratio of time period

$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{1}{8}$

$\Rightarrow \omega \propto \frac{1}{T}$

$\Rightarrow \frac{\omega_{1}}{\omega_{2}}=\frac{T_{2}}{T_{1}}$

$\Rightarrow \frac{\omega_{1}}{\omega_{2}}=\frac{8}{1}$

$\Rightarrow \omega_{1}: \omega_{2}=8: 1$

Leave a comment