Consider two satellites

Question:

Consider two satellites $S_{1}$ and $S_{2}$ with periods of revolution $1 \mathrm{hr}$. and $8 \mathrm{hr}$. respectively revolving around a planet in circular orbits. The ratio of angular velocity of satellite $S_{1}$ to the angular velocity of satellites $S_{2}$ is :

  1. $8: 1$

  2. $1: 4$

  3. $2: 1$

  4. $1: 8$


Correct Option: 1

Solution:

$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{1}{8}$

$\frac{2 \pi / \omega_{1}}{2 \pi / \omega_{2}}=\frac{1}{8}$

$\frac{\omega_{1}}{\omega_{2}}=\frac{8}{1}$

Leave a comment