Consider the statistics of two sets of observations as follows:
If the variance of the combined set of these two observations is $\frac{17}{9}$, then the value of $\mathbf{n}$ is equal to___________.
$\sigma^{2}=\frac{\mathrm{n}_{1} \sigma_{1}^{2}+\mathrm{n}_{2} \sigma_{2}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}+\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}\left(\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}\right)^{2}$
$\mathrm{n}_{1}=10, \mathrm{n}_{2}=\mathrm{n}, \sigma_{1}^{2}=2, \sigma_{2}^{2}=1$
$\overline{\mathrm{x}}_{1}=2, \overline{\mathrm{x}}_{2}=3, \sigma^{2}=\frac{17}{9}$
$\frac{17}{9}=\frac{10 \times 2+\mathrm{n}}{\mathrm{n}+10}+\frac{10 \mathrm{n}}{(\mathrm{n}+10)^{2}}(3-2)^{2}$
$\Rightarrow \quad \frac{17}{9}=\frac{(n+20)(n+10)+10 n}{(n+10)^{2}}$
$\Rightarrow \quad 17 n^{2}+1700+340 n=90 n+9\left(n^{2}+30 n+200\right)$
$\Rightarrow \quad 8 n^{2}-20 n-100=0$
$2 n^{2}-5 n-25=0$
$\Rightarrow \quad(2 n+5)(n-5)=0 \Rightarrow n=\frac{-5}{2}, 5$
(Rejected)
Hence $\mathrm{n}=5$