Consider a binary operation * on the set {1, 2, 3, 4, 5}

Question:

Consider a binary operation * on the set $\{1,2,3,4,5\}$ given by the following multiplication table.

(i) Compute $(2 * 3)^{*} 4$ and $2 *\left(3^{*} 4\right)$

(ii) Is * commutative?

(iii) Compute $\left(2^{*} 3\right)^{*}\left(4^{*} 5\right)$.

Solution:

(i) $\left(2^{*} 3\right)^{*} 4=1^{*} 4=1$

$2^{*}\left(3^{*} 4\right)=2^{*} 1=1$

(ii) For every $a, b \in\{1,2,3,4,5\}$, we have $a^{*} b=b^{*} a$. Therefore, the operation * is commutative.

(iii) $\left(2^{*} 3\right)=1$ and $\left(4^{*} 5\right)=1$

$\therefore(2 * 3)^{*}\left(4^{*} 5\right)=1^{*} 1=1$

Leave a comment