Compute the amount and the compound interest in each of the following by using the formulae when:
(i) Principal = Rs 3000, Rate = 5%, Time = 2 years
(ii) Principal = Rs 3000, Rate = 18%, Time = 2 years
(iii) Principal = Rs 5000, Rate = 10 paise per rupee per annum, Time = 2 years
(iv) Principal = Rs 2000, Rate = 4 paise per rupee per annum, Time = 3 years
(v) Principal = Rs 12800 , Rate $=7 \frac{1}{2} \%$, Time $=3$ years
(vi) Principal = Rs 10000, Rate 20% per annum compounded half-yearly, Time = 2 years
(vii) Principal = Rs 160000, Rate = 10 paise per rupee per annum compounded half-yearly, Time = 2 years.
Applying the rule $\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}$ on the given situations, we get:
(i)
$\mathrm{A}=3,000\left(1+\frac{5}{100}\right)^{2}$
$=3,000(1.05)^{2}$
$=\mathrm{Rs} 3,307.50$
Now,
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 3,307.50-\mathrm{Rs} 3,000$
$=\mathrm{Rs} 307.50$
(ii)
$\mathrm{A}=3,000\left(1+\frac{18}{100}\right)^{2}$
$=3,000(1.18)^{2}$
$=\mathrm{Rs} 4,177.20$
Now,
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 4,177.20-\mathrm{Rs} 3,000$
$=\mathrm{Rs} 1,177.20$
(iii)
$\mathrm{A}=5,000\left(1+\frac{10}{100}\right)^{2}$
$=5,000(1.10)^{2}$
$=\mathrm{Rs} 6,050$
Now,
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 6,050-\mathrm{Rs} 5,000$
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 6,050-\mathrm{Rs} 5,000$
$=\mathrm{Rs} 1,050$
(iv)
$\mathrm{A}=2,000\left(1+\frac{4}{100}\right)^{3}$
$=2,000(1.04)^{3}$
$=\mathrm{Rs} 2,249.68$
Now,
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 2,249.68-\mathrm{Rs} 2,000$
$=\mathrm{Rs} 249.68$
(v)
$\mathrm{A}=12,800\left(1+\frac{7.5}{100}\right)^{3}$
$=12,800(1.075)^{3}$
$=\mathrm{Rs} 15,901.40$
Now,
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 15,901.40-\mathrm{Rs} 12,800$
$=\mathrm{Rs} 3,101.40$
(vi)
$\mathrm{A}=10,000\left(1+\frac{20}{200}\right)^{4}$
$=10,000(1.1)^{4}$
$=\mathrm{Rs} 14,641$
Now,
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 14,641-\mathrm{Rs} 10,000$
$=\mathrm{Rs} 4,641$
(vii)
$\mathrm{A}=16,000\left(1+\frac{10}{200}\right)^{4}$
$=16,000(1.05)^{4}$
$=\mathrm{Rs} 19,448.1$
Now,
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 19,448.1-\mathrm{Rs} 16,000$
$=\mathrm{Rs} 3,448.1$