Complite the following tables given that x varies directly as y.
(i)
(ii)
(iii)
(iv)
(v)
Here, $x$ and $y$ vary directly.
$\therefore x=k y$
(i) $x=2.5$ and $y=5$
i.e., $2.5=k \times 5$
$\Rightarrow k=\frac{2.5}{5}=0.5$
For $y=8$ and $k=0.5$, we have :
$x=k y$
$\Rightarrow x=8 \times 0.5=4$
For $y=12$ and $k=0.5$, we have :
$x=k y$
$\Rightarrow x=12 \times 0.5=6$
For $x=15$ and $k=0.5$, we have :
$x=k y$
$\Rightarrow 15=0.5 \times y$
$\Rightarrow y=\frac{15}{0.5}=30$
(ii) $x=5$ and $y=8$
i.e., $5=k \times 8$
$\Rightarrow k=\frac{5}{8}=0.625$
For $y=12$ and $k=0.625$, we have :
$x=k y$
$\Rightarrow x=12 \times 0.625=7.5$
For $x=10$ and $k=0.625$, we have :
$x=k y$
For $x=25$ and $k=0.625$, we have :
$x=k y$
$\Rightarrow 25=0.625 \times y$
$\Rightarrow y=\frac{25}{0.625}=40$
For $y=32$ and $k=0.625$, we have :
$x=k y$
$\Rightarrow x=0.625 \times 32=20$
(iii) $x=6$ and $y=15$
i.e., $6=k \times 15$
$\Rightarrow k=\frac{6}{15}=0.4$
For $x=10$ and $k=0.4$, we have :
$y=\frac{10}{0.4}=25$
For $y=40$ and $k=0.4$, we have :
$x=0.4 \times 40=16$
For $x=20$ and $k=0.4$, we have :
$y=\frac{20}{0.4}=50$
(iv) $x=4$ and $y=16$
i.e., $4=k \times 16$
$\Rightarrow k=\frac{4}{16}=\frac{1}{4}$
For $x=9$ and $k=\frac{1}{4}$, we have :
$9=k y$
$\Rightarrow y=4 \times 9=36$
For $y=48$ and $k=\frac{1}{4}$, we have :
$x=k y$
$=\frac{1}{4} \times 48=12$
For $y=36$ and $k=\frac{1}{4}$, we have :
$x=k y$
$=\frac{1}{4} \times 36=9$
For $x=3$ and $k=\frac{1}{4}$, we have :
$x=k y$
$\Rightarrow 3=\frac{1}{4} \times y$
$\Rightarrow y=12$
For $y=4$ and $k=\frac{1}{4}$, we have :
$x=k y$
$=\frac{1}{4} \times 4=1$
(v) $x=5$ and $y=20$
i.e., $5=k \times 20$
$\Rightarrow k=\frac{5}{20}=\frac{1}{4}$
For $x=3$ and $k=\frac{1}{4}$, we have :
$3=\frac{1}{4} \times y$
$\Rightarrow y=4 \times 3=12$
For $x=9, k=\frac{1}{4}$, we have :
$x=k y$
$\Rightarrow 9=\frac{1}{4} \times y$
$\Rightarrow y=9 \times 4=36$