Question:
Compare the modal ages of two groups of students appearing for an entrance test:
Solution:
For group “A”
The maximum frequency is 78 so the modal class is 18–20.
Therefore,
$l=18$
$h=2$
$f=78$
$f_{1}=50$
$f_{2}=46$
$\Rightarrow$ Mode $=l+\frac{f-f_{1}}{2 f-f_{1}-f_{2}} \times h$
$=18+\frac{78-50}{156-50-46} \times 2$
$=18+\frac{14}{15}$
$=18+0.93$
Mode $=18.93$
For group “B”
The maximum frequency 89 so modal class 18–20.
Therefore,
$l=18$
$h=2$
$f=89$
$f_{1}=54$
$f_{2}=40$
$\Rightarrow$ Mode $=18+\frac{89-54}{178-54-40} \times 2$
$=18+\frac{35}{84} \times 2$
$=18+\frac{5}{6}$
$=18+0.83$
Mode $=18.83$
Thus, the modal age of group A is 18.93 years whereas the modal age of group B is 18.83 years.