Classify the following functions as injection, surjection or bijection :
(i) $f: \mathbf{N} \rightarrow \mathbf{N}$ given by $f(x)=x^{2}$
(ii) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(x)=x^{2}$
(iii) $f: \mathbf{N} \rightarrow \mathbf{N}$ given by $f(x)=x^{3}$
(iv) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(x)=x^{3}$
(v) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=|x|$
(vi) $f: \boldsymbol{Z} \rightarrow \boldsymbol{Z}$, defined by $f(x)=x^{2}+x$
(vii) $f: \mathbf{Z} \rightarrow \mathbf{Z}$, defined by $f(x)=x-5$
(viii) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=\sin x$
(ix) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=x^{3}+1$
(x) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=x^{3}-x$
(xi) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=\sin ^{2} x+\cos ^{2} x$
(xii) $f: \mathbf{Q}-\{3\} \rightarrow \mathbf{Q}$, defined by $f(x)=\frac{2 x+3}{x-3}$
(xiii) $f: \mathbf{Q} \rightarrow \mathbf{Q}$, defined by $f(x)=x^{3}+1$
(xiv) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=5 x^{3}+4$
$(\mathrm{xv}) f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=3-4 x$
(xvi) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=1+x^{2}$
(xvii) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=\frac{x}{x^{2}+1}$
[NCERT EXEMPLAR]
(i) $f: \mathbf{N} \rightarrow \mathbf{N}$, given by $f(x)=x^{2}$
Injection test:
Let $x$ and $y$ be any two elements in the domain $(\mathbf{N})$, such that $f(x)=f(y)$.
$f(x)=f(y)$
$x^{2}=y^{2}$
$x=y$ (We do not get $\pm$ because $x$ and $y$ are in $\mathbf{N}$ )
So, f is an injection .
Surjection test:
Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).
f(x) = y
$x^{2}=y$
$x=\sqrt{y}$, which may not be in $\mathbf{N}$.
For example, if $y=3$,
$x=\sqrt{3}$ is not in $\mathbf{N}$.
So, f is not a surjection.
So, f is not a bijection.
(ii) $f: \mathbf{Z} \rightarrow \mathbf{Z}$, given by $f(x)=x^{2}$
Injection test:
Let x and y be any two elements in the domain (Z), such that f(x) = f(y).
$f(x)=f(y)$
$x^{2}=y^{2}$
$x=\pm y$
So, f is not an injection .
Surjection test:
Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).
$f(x)=y$
$x^{2}=y$
$x=\pm \sqrt{y}$ which may not be in Z.
For example, if $y=3$,
$x=\pm \sqrt{3}$ is not in $\mathbf{Z}$.
So, f is not a surjection.
So, f is not a bijection.
(iii) $f: \mathbf{N} \rightarrow \mathbf{N}$, given by $f(x)=x^{3}$
Injection test:
Let x and y be any two elements in the domain (N), such that f(x) = f(y).
$f(x)=f(y)$
$x^{3}=y^{3}$
$x=y$
So, f is an injection .
Surjection test:
Let y be any element in the co-domain (N), such that f(x) = y for some element x in N (domain).
$f(x)=y$
$x^{3}=y$
$x=\sqrt[3]{y}$ which may not be in $\mathbf{N}$.
For example, if $y=3$,
$x=\sqrt[3]{3}$ is not in $\mathbf{N}$
So, f is not a surjection and f is not a bijection.
(iv) $f: \mathbf{Z} \rightarrow \mathbf{Z}$, given by $f(x)=x^{3}$
Injection test:
Let x and y be any two elements in the domain (Z), such that f(x) = f(y)
$f(x)=f(y)$
$x^{3}=y^{3}$
$x=y$
So, f is an injection.
Surjection test:
Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).
$f(x)=y$
$x^{3}=y$
$x=\sqrt[3]{y}$ which may not be in $\mathbf{Z}$.
For example, if $y=3$,
$x=\sqrt[3]{3}$ is not in $\mathbf{Z}$.
So, f is not a surjection and f is not a bijection.
(v) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=|x|$
Injection test:
Let x and y be any two elements in the domain (R), such that f(x) = f(y)
$f(x)=f(y)$
$|x|=|y|$
$x=\pm y$
So, f is not an injection .
Surjection test:
Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).
$f(x)=y$
$|x|=y$
$x=\pm y \in \mathbf{Z}$
$|x|=y$
$x=\pm y \in \mathbf{Z}$
(vi) $f: Z \rightarrow Z$, defined by $f(x)=x^{2}+x$
Injection test:
Let x and y be any two elements in the domain (Z), such that f(x) = f(y).
$f(x)=f(y)$
$x^{2}+x=y^{2}+y$
Here, we cannot say that $x=y$.
For example, $x=2$ and $y=-3$
Then,
$x^{2}+x=2^{2}+2=6$
$y^{2}+y=(-3)^{2}-3=6$
So, we have two numbers 2 and $-3$ in the domain $\mathbf{Z}$ whose image is same as 6 .
So, $f$ is not an injection.
Surjection test:
Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).
$f(x)=y$
$x^{2}+x=y$
Here, we cannot say $x \in \mathbf{Z}$.
For example, $y=-4$.
$x^{2}+x=-4$
$x^{2}+x+4=0$
$x=\frac{-1 \pm \sqrt{-15}}{2}=\frac{-1 \pm i \sqrt{15}}{2}$ which is not in $\mathbf{Z} .$
So, f is not a surjection and f is not a bijection.
(vii) $f: \mathbf{Z} \rightarrow \mathbf{Z}$, defined by $f(x)=x-5$
Injection test:
Let x and y be any two elements in the domain (Z), such that f(x) = f(y).
$f(x)=f(y)$
$x-5=y-5$
$x=y$
So, f is an injection .
Surjection test:
Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).
$f(x)=y$
$x-5=y$
$x=y+5$, which is in $\mathbf{Z}$.
So, f is a surjection and f is a bijection.
(viii) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=\sin x$
Injection test:
Let x and y be any two elements in the domain (R), such that f(x) = f(y).
$f(x)=f(y)$
$\sin x=\sin y$
Here, $x$ may not be equal to $y$ because $\sin 0=\sin \pi$.
So, 0 and $\pi$ have the same image 0 .
So, $f$ is not an injection.
Surjection test:
Range of $f=[-1,1]$
Co-domain of $f=\mathbf{R}$
Both are not same.
So, f is not a surjection and f is not a bijection.
(ix) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=x^{3}+1$
Injection test:
Let x and y be any two elements in the domain (R), such that f(x) = f(y).
$f(x)=f(y)$
$x^{3}+1=y^{3}+1$
$x^{3}=y^{3}$
$x=y$
So, f is an injection.
Surjection test:
Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).
$f(x)=y$
$x^{3}+1=y$
$x=\sqrt[3]{y-1} \in \mathbf{R}$
So, f is a surjection.
So, f is a bijection.
(x) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=x^{3}-x$
Injection test:
Let x and y be any two elements in the domain (R), such that f(x) = f(y).
$f(x)=f(y)$
$x^{3}-x=y^{3}-y$
Here, we cannot say $x=y$.
For example, $x=1$ and $y=-1$
$x^{3}-x=1-1=0$
$y^{3}-y=(-1)^{3}-(-1)-1+1=0$
So, 1 and $-1$ have the same image 0 .
So, f is not an injection.
Surjection test:
Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).
$f(x)=y$
$x^{3}-x=y$
By observation we can say that there exist some $x$ in $\mathbf{R}$, such that $x^{3}-\mathrm{x}=\mathrm{y}$.
So, $f$ is a surjection and $f$ is not a bijection.
(xi) $f: \mathbf{R} \rightarrow \mathbf{R}$, defined by $f(x)=\sin ^{2} x+\cos ^{2} x$
$f(x)=\sin ^{2} x+\cos ^{2} x=1$
So, for all elements in the domain, the image is 1.
So, f is not an injection.
Range of f = {1}
Co-domain of f = R
Both are not same.
So, f is not a surjection and f is not a bijection.
(xii) $f: \mathbf{Q}-\{3\} \rightarrow \mathbf{Q}$, defined by $f(x)=\frac{2 x+3}{x-3}$
Injection test:
Let x and y be any two elements in the domain (Q − {3}), such that f(x) = f(y).
$f(x)=f(y)$
$\frac{2 x+3}{x-3}=\frac{2 y+3}{y-3}$
$(2 x+3)(y-3)=(2 y+3)(x-3)$
$2 x y-6 x+3 y-9=2 x y-6 y+3 x-9$
$9 x=9 y$
$x=y$
So, f is an injection.
Surjection test:
Let y be any element in the co-domain (Q − {3}), such that f(x) = y for some element x in Q (domain).
$f(x)=y$
$\frac{2 x+3}{x-3}=y$
$2 x+3=x y-3 y$
$2 x-x y=-3 y-3$
$x(2-y)=-3(y+1)$
$x=\frac{3(y+1)}{y-2}$, which is not defined at $y=2$
So, f is not a surjection and f is not a bijection.
(xiii) $f: \mathbf{Q} \rightarrow \mathbf{Q}$, defined by $f(x)=x^{3}+1$
Injection test:
Let x and y be any two elements in the domain (Q), such that f(x) = f(y).
$f(x)=f(y)$
$x^{3}+1=y^{3}+1$
$x^{3}=y^{3}$
$x=y$
So, f is an injection .
Surjection test:
Let y be any element in the co-domain (Q), such that f(x) = y for some element x in Q (domain).
$f(x)=y$
$x^{3}+1=y$
$x=\sqrt[3]{y-1}$, which may not be in $\mathbf{Q} .$
For example, if $y=8$,
$x^{3}+1=8$
$x^{3}=7$
$x=\sqrt[3]{7}$, which is not in $\mathbf{Q}$.
So, f is not a surjection and