Question.
Choose the correct choice in the following and justify
(i) 30th term of the AP: $10,7,4, \ldots$ is
(A) 97
(B) 77
(C) $-77$
(D) $-87$
(ii) 11th term of the AP: $-3,-\frac{1}{2}, 2, \ldots$ is
(A) 28
(B) 22
(C) $-38$
(D) $-48 \frac{1}{2}$
Choose the correct choice in the following and justify
(i) 30th term of the AP: $10,7,4, \ldots$ is
(A) 97
(B) 77
(C) $-77$
(D) $-87$
(ii) 11th term of the AP: $-3,-\frac{1}{2}, 2, \ldots$ is
(A) 28
(B) 22
(C) $-38$
(D) $-48 \frac{1}{2}$
Solution:
(i) $a=10, d=-3$
$\mathrm{t}_{30}=\mathrm{a}+29 \mathrm{~d}=10+29 \times(-3)$
$=10-87=-77$
Hence, the correct option is (C)
(ii) $\mathrm{a}=-3, \mathrm{~d}=5 / 2$
$\mathrm{t}_{11}=\mathrm{a}+10 \mathrm{~d}=-3+10 \times 5 / 2=22$
Hence, the correct option is (B)
(i) $a=10, d=-3$
$\mathrm{t}_{30}=\mathrm{a}+29 \mathrm{~d}=10+29 \times(-3)$
$=10-87=-77$
Hence, the correct option is (C)
(ii) $\mathrm{a}=-3, \mathrm{~d}=5 / 2$
$\mathrm{t}_{11}=\mathrm{a}+10 \mathrm{~d}=-3+10 \times 5 / 2=22$
Hence, the correct option is (B)